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A Simple Recursive Formula for Calculating the
S-Parameters of Finite Periodic Structures

Cen Yen Ong, Student Member, IEEE,and Michal Okoniewski, Senior Member, IEEE

Abstract—A simple and efficient recursive formula to calcu-
late the -parameters of large, finite periodic structures is intro-
duced. The technique utilizes measured or computed matrices
of structures with a small number of periods. The formula is veri-
fied on a simple rectangular waveguide with periodic gratings. Re-
sults from the formula are plotted against similar results obtained
from finite-difference time-domain (FDTD) simulations, and they
show excellent agreement. This formula can be used to compute the

-parameters of large microwave or optical periodic structures,
which, by virtue of their finiteness may not be open to the applica-
tion of periodic boundary conditions.

Index Terms—Electromagnetic propagation, FDTD, filters, pe-
riodic structures.

I. INTRODUCTION

PERIODIC structures are ubiquitous in the microwave
and optical domain. The periodic perturbations, with

dimensions on the order of the wavelength, significantly
affect the propagation of electromagnetic waves, allowing the
transmission of some, while reflecting or attenuating others.
The frequency selectivity of periodic structures has thus been
exploited in microwave and optical resonators and filters. Peri-
odic structures are also integrated in distributed feedback lasers,
distributed Bragg reflection lasers and quasiphase-matched
second harmonic generators [1].

Electromagnetic propagation characteristics in periodic
structures have been analyzed via the finite-difference time-do-
main (FDTD) method, the method of moments, the method
of lines [2], the coupled-wave method [3], and by utilizing
the Floquet–Bloch theorem [4]. Hybrid frequency-time or
time-spatial techniques of analysis have also been explored
[1], [5]. In most techniques, the analysis is simplified by the
assumption of infinite periodicity, arguing that it offers a good
model for the central elements of a large, but finite periodic
element [6]. When infinite periodicity is assumed, the analysis
of a large structure reduces to the solution of a single cell.
In FDTD, periodic boundary conditions (PBCs) are used to
emulate infinite periodicity at the walls of the unit cell. PBCs,
however, are difficult to implement when the angle of incidence
of the electromagnetic wave is all but normal [6], [7]. Moreover,
the realistic modeling of finitely periodic structures is of major

Manuscript received November 28, 2001; revised April 22, 2002. This work
was supported in part by the NSERC, Alberta Heritage Foundation for Science
and Engineering Research and the Telecommunications Research Laboratories
(TRLabs), Canada. The review of this letter was arranged by Associate Editor
Dr. Rüdiger Vahldieck.

The authors are with the Department of Electrical and Computer Engineering,
University of Calgary, Calgary, AB T2N 1N4 Canada (e-mail: ongc@enel.ucal-
gary.ca).

Publisher Item Identifier 10.1109/LMWC.2002.801140.

Fig. 1. Top view of periodic structure.

interest since the symmetry of infinite periodic structures often
results in oversimplified electromagnetic properties [3].

In a finite periodic structure, increasing the number of periods
increases the resonance of the structure until the limit of satu-
ration is reached [4]. As the number of periods increases, the
computational problem increases in both memory and time. Per-
forming FDTD simulations of large periodic structures is com-
putationally intensive and, thus, prohibitively expensive.

On the other hand, it is relatively simple to measure or simu-
late structures with a relatively small number of periods. Conse-
quently, a simple recursive formula to obtain the-parameters
of large finite periodic structures, based on the knowledge of

-parameters of smaller structures, is introduced. The formula
abstracts from higher order modes that are generated at the peri-
odic discontinuities within the structure by implicitly encapsu-
lating their effect in the transmission of modes that exist at the
input and output ports. This method thus applies to any general
periodic structures with multi- or single-mode propagation.

II. THEORY

The -parameters of an arbitrary structure can be measured or
computed using previously mentioned modern electromagnetic
analysis techniques. The matrix of the same structure
can then be calculated from the-parameters using basic trans-
formation equations [8].

Consider a simple structure that is periodic in one dimension,
as illustrated in Fig. 1.

The structure can be mathematically modeled by cascading
its composite transmission matrices, as in Fig. 2.

Let where, ,
and ; . The

variable enumerates the number of repetition of a basic cell of
the structure, which, in general, can consist of one or more pe-
riods. Then, assuming that all internal periods are identical, i.e.,

, the matrix of the overall structure
can be represented as . Letting

(1)
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(a)

(b)

Fig. 2. (a) Initial matrix; (b) matrix with an additional period.

Consequently

(2)

The matrices of periodic structures with and
repetitions of the basic cell can then be written as follows

(3)

(4)

Substituting (2) into (3), we get .
Then, solving for , we obtain

(5)

Substituting (2) and (5) into (4) yields

Simplifying the above equation results in the recursive formula,
. More generally,

(6)

Equation (6) implies that the matrix for a structure with
repetitions can be computed once the matrices

for the same structure withand repetitions are known.
The -parameters of the structure can then be obtained from the

matrix.
Note the generality of the approach—typically, for closely

spaced periods, a number of higher order modes would be ex-
cited at the discontinuities. Thus, thematrices would be of di-
mensions by , with representing the number of modes
necessary to fully characterize multi-mode relations in each sec-
tion. By the same argument, and would be rectangular
matrices with sizes by and by , respectively. The
matrices would relate the interaction betweenmodes from the
input with modes within the periodic structure. Fortunately,
all internal higher order modal interactions are accounted for,
but are not present in the final recursive formula. The multi-
mode matrices need not be explicitly known.

III. RESULTS

To verify the proposed formula, a simple waveguide problem
is considered. The simulated waveguide has the periodic charac-
teristic shown in Fig. 1, with width and height of 25 mm5 mm
and length of 595 mm along the axis of periodicity. Two exper-
iments are performed: first, with the shaded boxes in Fig. 1 as

Fig. 3. S of rectangular waveguide with 40 perfect conductor periods.

solid perfect conductors and, second, with the boxes as dielec-
tric gratings with relative permittivity of 5.6 and loss tangent of
0.004. The second waveguide contains more higher order modes
than the first, and serves as a verification test that the formula
applies to multimode propagation. The two ends of the wave-
guide are terminated in perfectly matched layers (eight layers,

80 dB, PML power 3.0 profile).
In both cases, four FDTD simulations are performed with

a) eight, b) ten, c) 12, and d) 40 periods. The structure is
discretized with mm, and is simulated
for 20 000 time steps. The time interval between each time
step, computed by the FDTD program, is 1.9 ps.-parameters
are computed from observations of the transverse electric
field. -parameters for cases a), b), and c), transformed to
their respective matrices, are denoted, ,

and . The -parameters for
case d) are control values against which the results from the
matrix equation will be compared.

and are used in the proposed formula, to predict
the transmission matrix of a periodic structure with 40 periods
from the knowledge of eight and ten in the following sequence
of four iterations:

(7)

(8)

(9)

(10)

The subscript “12,” “16,” “24,” and “40” on the transmission
matrices denote the number of periods that is being computed.
The periodic increment “ ” in (7)–(10) is two, four, eight, and
16 periods, respectively. A similar procedure, except with only
three iterations, is followed to obtain the transmission matrix of
40 periods from and .

The results are transformed into-parameters and plotted
against the FDTD results for a periodic waveguide with 40 grat-
ings. Since the structure is symmetric and reciprocal,
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Fig. 4. S of rectangular waveguide with 40 dielectric periods.

Fig. 5. S of rectangular waveguide with 40 dielectric periods.

and . of the waveguide with perfect conductor
gratings is plotted in Fig. 3. of the same structure exhibits
similar accuracy and is not shown because of space constraint.

The results of the waveguide with dielectric gratings are plotted
in Figs. 4 and 5. The frequency spectrum is normalized with re-
spect to 12 GHz.

Figs. 3–5 show that the-parameters calculated with the re-
cursive formula have excellent agreement with that obtained
from FDTD simulations. The utilization of the simple formula
to compute the -parameters of a structure with a large number
of periodic perturbations is more time and computationally effi-
cient than performing FDTD simulations on the same structure.

IV. CONCLUSION

Full wave electromagnetic simulators, such as FDTD, are ver-
satile methods to extract the propagation characteristic of elec-
tromagnetic waves in arbitrary structures. They are, however,
computationally intensive, and as the simulation space increases
in size, the computation time becomes prohibitive. The pro-
posed formula is an efficient tool to extend the results obtained
from small-sized computations to structures with a large number
of periodic gratings. The results are in excellent agreement with
those obtained directly from FDTD.
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